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Decomposing Muscle Activity
in Motor Tasks

Methods and Interpretation

LENA H. TING AND STACIE A. CHVATAL

How do humans and animals move so elegantly through unpredictable
and dynamic environments? Why does this question continue to pose such
a challenge? During any motor task, many physiological elements through-
out the body must be coordinated, such as limbs, muscles, neurons, etc. A
major question in motor control is: How do the overall functions and char-
acteristics of movements arise from the functional arrangement and coor-
dination of both neuromuscular elements and environmental interactions?
Although modern technology allows us to collect an unprecedented
amount of data on the activity of neurons, muscles, and limbs during a
wide variety of behaviors, we still lack an understanding of how individual
elements of the body interact to produce the many movements we perform,
let alone characteristics such as grace or clumsiness.

Interpreting both structure and variability in the motor system and
relating it to the resulting biomechanical and behavioral outputs remains a
grand challenge in understanding how we move. Nikolai Bernstein noted
the fact that motor behaviors never repeat themselves exactly, even when
the same task is performed in succession (Bernstein 1967). On the other
hand, he also noted that characteristic output patterns occur even when a
motor task is performed by different sets of muscles, such as when drawing
shapes or letters on a piece of paper versus on a blackboard, or with a dif-
ferent appendage. Similarly, more recent studies also demonstrate that the
performance of a motor task, such as reaching to a target, can occur quite
consistently even when there is a great deal of variability in the underlying
joint motions or torques contributing to that task (Newell and Carlton 1988;
Latash et al. 2002; Ko et al. 2003; Reisman and Scholz 2006). These findings
highlight the fact that our bodies have a large number of degrees of free-
dom in the joints, muscles, and neurons that allow them to be flexible and
functionally reconfigured to perform the same task, as well as different
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asks (see Kelso, Sternad, this volume). During any so-called coordinated
jovement, synchrony and similarity are observed across many different
Kinematic, kinetic, electromyographic, and neural signals (Bernstein 1967;
acpherson 1991). But, when looking across a wide behavioral repertoire,
ynchrony and coordination observed in one movement may be abol-
in another, such that fluctuations in the spatiotemporal dynamics of
the multiple measures may appear coordinated in one instance and inde-
pendent in another (Bernstein 1967; Macpherson 1991). Such differences
are potentially due to both changes in the neural control of muscles, as well
as to changing interactions of the body with the environment under
arious conditions.
e Controlling movements requires not only organizing physiological pro-
- gesses for movement, but also requires consideration of the complex inter-
“actions of forces acting between the organism and the environment.
Bernstein defined the coordination of movement as: “the process of master-
ing redundant degrees of freedom of the moving organ, in other words, its
conversion to a controllable system” (Bernstein 1967). By “controllable”
‘Bernstein meant that coordinated motor activity causes predictable biome-
anical events, such as force generation and motion, that allow us to reli-
ly perform a motor task. Thus, understanding movement requires
‘characterizing the degrees of freedom of the physiological system that are
used in the performance of any particular movement, the reconfiguration
of such degrees of freedom in the performance of divergent movements
e Latash, this volume), and the relationships of these degrees of freedom
to the biomechanical interactions that ultimately generate the movement
(see Prilutsky, this volume). Gathering large sets of data during natural
movements is becoming increasingly easier, thus allowing us to character-
‘ize coordination across many variables at different levels of the motor
system; however, interpreting such large data sets and analyzing them to
 test motor control hypotheses remains a challenge.
" Computational methods for analyzing large sets of data are now easily
accessible and available; however, the utility of such methods for provid-
. ing insight into motor control is debated. Can such techniques help us to
- understand increasingly large data sets? Can quantitative analysis provide
- further insight than that which scientists have gathered from observation?
- Are automated pattern-recognition techniques able to reveal that which an
~ experienced scientist can see when examining raw data? What are the
. potential benefits and pitfalls of using such techniques? These questions
- will be addressed in this chapter.
- Here, our goal is to provide instructive tutorials to provide an intuitive
- guide to the similarities and differences between two primary techniques
~ used for the analysis and decomposition of multiple signals in motor con-
- trol and neuroscience, as well as in engineering fields: principal compo-
- nents analysis (PCA) and non-negative matrix factorization (NMF) (Lee
and Seung 1999). Although comprehensive texts on the quantitative aspects
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of these techniques are readily available (Ramsay and Silverman 2005), we
present methods for understanding how the properties of each technique
affect the decomposition and physiological interpretation of muscle activa-
tion patterns in a simple example and in actual data from postural control
and walking. We have chosen two commonly used linear decomposition
techniques that render the most divergent results; however, similar prin-
ciples could be used as a basis for comparing other decomposition tech-
niques, such asindependent components analysis (ICA) or k-means
analysis (Tresch et al. 2006). We will discuss the interpretations and impli-
cations of the results and how such techniques might be used to under-
stand principles of motor coordination, as well as give insight into the
function of the nervous system in translating goal-level intentions into
specific muscle activation patterns for movement.

BASIC PROPERTIES AND DIFFERENCES BETWEEN PCA
AND NMF: A SIMPLE EXAMPLE

Although PCA and NMF are similar in their underlying concept and math-
ematical representations, there are key differences in their implementation
and in the resulting components. Both PCA and NMF are linear decompo-
sition techniques that assume that the set of measured data is composed of
linear combinations of a smaller number of underlying elements (Fig. 5.1A).
That is, given a number of simultaneous observations of multiple data
channels, any particular observation could be represented as:

M; =W, + ¢;W, +...+ c;W, + error (Eq. 1)

Here, M is a vector that represents measurements of multiple channels of
data (Fig. 5.1B); for example, the activity of m muscles at a given time point,
arranged in a column. On the right side of the equation, the components or
basis functions W; are vectors, also of length m, that represent invariant pat-
terns of activity across those different channels. The pattern of muscle activ-
ity can be described by n scalar values ¢ each of which specifies the
contributions of each component to the measured muscle activation pattern
M, If there are m muscles and n<m components, then the representation of
M; in terms of the components W; and the weight or scaling factors c; is
lower-dimensional than simply stating the value of each element of M;. Such
linear decomposition techniques therefore test the hypothesis that, over a
large number of observations of M;, the components W; remain fixed, but the
scaling factors c; are allowed to change and are sufficient to account for all
of the variations of the data measured across different conditions. When
analyzing muscle activation patterns, the modules W; are often referred to as
muscle synergies (Tresch et al. 1999; Cheung et al. 2005; Ting and Macpherson
2005; Torres-Oviedo and Ting 2007) or M-modes (Danion et al. 2003;
Krishnamoorthy et al. 2004; Latash et al. 2007). In this context, the hypothesis
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Figure 5.1 Electromyography (EMG) data decomposition schematic and
muscle synergy concept. A: Any pattern of multiple muscle activation can be
represented as a linear combination of the activations of that muscle by each
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is that muscle synergies remain fixed, but activation of these synergies can
vary, resulting in observed variations in individual muscle activity.

Although similar in concept, in practice, PCA and NMF are quite differ-
ent; each method decomposes the variability within a given data set in very
different ways. PCA is an analytical technique, meaning that the compo-
nents are found through a straightforward set of computations. Therefore,
it is easy to use and there are readily available algorithms included in most
data processing software packages. This is possible because PCA requires
that the components be orthogonal (e.g., perpendicular) to each other, cre-
ating a unique solution to any decomposition. Furthermore, it is relatively
straightforward to select the appropriate number of components needed to
explain a given data set based on a cutoff value for the variance accounted
for. In contrast, NMF is found using a search algorithm, which means that
it has to start with a set of random components and iteratively improve on
them until an adequate proportion of the variability in the dataset is
accounted for. Components generated by repeated searches will not be
numerically identical but will be similar. Because NMF constrains both the
weights ¢; as well as all of the elements of the components W, to be non-
negative, the problem is what is called convex. That is, there are no local
minima for the search to be “stuck” in, therefore components from multiple
searches are numerically similar. In a non-negative space, it is not possible
for the components to be orthogonal; however, they must be independent,
meaning that no component can be defined as a linear combination of the
other components. The iterative technique also requires that the number of
components be specified in advance, so that multiple searches must be
done to determine the right number.

In the following set of tutorials, we use a simple two-dimensional exam-
ple of a simulated dataset to illustrate the differences in how PCA and NMF
decompose variability in the dataset. For all three examples, simulated
muscle activity data are fabricated by assuming that there are two underly-
ing components, which can be interpreted as muscle synergies, W; and W,
that each define a different ratio between the activity of two muscles (Fig.
5.2A, gray bars). These components can also be drawn as vectors on a two-
dimensional plot (Fig. 5.2A, gray arrows). A set of data, M, is created by
randomly assigning the activation level of each component (c; and ¢,) from
a uniform distribution between 0 and 1. Each data point, or observation M;,
can be represented as a vector [mymy;], and plotted as a single point on a set

-

Figure 5.1 (Continued) muscle synergy component. In this example, there are
n =2 components and m = 3 muscles, thus M(8) can be represented in terms of
the lower-dimensional combination of muscle synergies (components, W;) and
activation commands (c(6)). B) Organization of the data matrix and the struc-
ture of the W and ¢ matrices.
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of axes representing the level of activation of muscle 1 versus muscle 2 (Fig.
5.2A). The tutorials are available for download as part of the supplementary

materials, at http:/ /neuro.gatech.edu/groups/ting/PMCtutorial html.

Orthogonality Versus Independence

The constraints of orthogonality and independence in PCA, and indepen-
dence without orthogonality in NMF, account for the large differences
between the components extracted by each technique. In this example, the
activity of each component was equally weighted, so that the data is scat-
tered evenly between the two vectors, W, and W, used to create the data
(Fig.5.2A). When PCA is applied to the data, two components are extracted
(Fig. 5.2B). The first aligns with the center of the long axis of the data and
accounts for 87% of the variability. Because the scaling factors can be posi-
tive or negative, the direction that W, points does not matter, only the line
it defines. The second component must be at a right angle to the first com-
ponent to satisfy orthogonality. It accounts for a much smaller portion of
the variability, only 13%. Neither PCA component looks like the original
components used to generate the data. Using NMF, the extracted compo-
nents are similar to the original components, W; and W,, used to generate
the data, appearing at the edges of the data points (Fig. 5.2C). The variabil-
ity accounted for by each component is similar, 49% and 51%, respectively.
Although the components are not orthogonal, the addition of a second

component nonetheless increases the set of possible patterns of muscle acti-
vation between muscles 1 and 2.

PCA Is Descriptive; NMF Is Prescriptive

PCA, much like a multiple regression, describes the mean and residual
variance from the mean in successive principal components. Before identi-
fying the components, the original dataset is typically demeaned; if this is
not done, then the first principal component represents the mean value of
each variable across the dataset. Otherwise, as in this example, the first
principal component in PCA describes the largest deviation from that mean
in each muscle across a given dataset. Each additional component describes
the orthogonal direction containing the next largest deviations from that
mean. In our two-dimensional example, it means that if the first compo-
nent changes, then the second component must also change. The percent-
ageofvariability accounted forby each componentdecreases monotonically,
describing the degree to which the dataset varies in the corresponding
direction. Because PCA allows for both negative and positive values for the
scaling factors, it is possible to describe any point on the plane with two
independent components derived from data in that plane, regardless of the
direction that they point (Fig. 5.2B). Data with multiple dimensions can be
restricted to a plane by choosing only the first two principal components.



“ejep a1} ojesauad 0} pasn asoy) 0} reprurs axe sjusuodwod a3 uredy
5y woy eyep sy} ssodurosep 01 NN Sursn pagmuepr sjusuoduro)) [ g Ul payHUSpL 950U} 03 IR[RUTS Yoo] sjyusuodwod ay; pue ‘a1
pUe Tz JO SINJeA ULSW 3Y3 2I3YM Jep JO ,SPNop,, 0m} 3t usamiaq sassed dipy o) woxy eyep oy 2s0dwodsp 03 Yo Sursn paynuspr
syusuoduwio) ‘H ‘(] WoIJ ejep a1} YImM Suofe papnour sem Iy} pue ‘| pue () UdaMIdq UOHNGLISIP ULIOJIUN B WOy UdXe) SEm D Sealaym
‘') pue () USaMIaq UONNGLISIP ULIOJTUN B WIOI} usye) sem D ‘ejep sny) ayeroua8 of, Tan Sursn spremo) payySrem st jred pue Iz Sursn
spremo)} panySam st ejep ay Jo wed mou jdaoxs ( pue v ut se sjusuodurod om) sures ay Suisn pajonIsuod St ee( 19 D) Ul PSYHULpI
sjusuoduwiod s} se [[am Sk ‘ejep a1} sjeIsuad 03 pasn ssoyy 0] Jepruuls are sjusuodurod asay) 198 eyep ) jo uoneudd Jyy ul seiq sy
a11dsa(] (] woxy eiep ay3 asodurodsp 03 JAN Suisn paynuspt spusuoduroy) :f A\ WoL JUIJIP St %A1 1nq ‘19s ejep a3 Jo uoneouad
a1 ur Ipp spIemo; seiq 9y} Sunospge: ‘I 03 refrumts syoof Pz - woig ejep a1 asodwodsp 03 D g Sursn pagnuapr sjusuodwod) :g
"€°0 pue () U9IMISQ UONTQLISIP WLIOFIUN B WIOL] Uaye} Sem &3 SLaIoym ‘I pue () Usamiaq UOQNJLISIP ULIOJIUN B WOL U2Xe} sem B
‘ejep sny} sjersuad 0] 1wpIo uf “Tp Sursn spremo; payySem st 31 mou 3dadxa ‘v ur se sjusuodiod om) aures ay) Suisn pajdnysuod s
eje(] i “eiep 3y erauad 03 pasn (a4 pue Ia4) spuauoduod TeurSiio ayj 03 AjLIe[nuars Sy} 9j0N "PRO Blep Y1 JO saSpa ay) Ieau punoy
are syusuoduwro)) “y woiy ejep ayy asodwodap 03 JN Sursn pagnueaprt sjusuodwon) 1) "HONIAIIP [eUoSoyIIo 3l UL aq 0 PAUTEHSUO0D
ST PUODas 31} pue ‘pnop ejep ayj jo srxe Suof ay} Suoe psyoaIIp ST JUSUOdUIod 18I S, "J0IIPA Yora SPISSq WMOYS ST 10§ SJUNOdIR Jusu
-odurod yoes yeyy Aiqeriea ejep e3o3 jo adejusorad oy [ v wox viep ay) asodurosap 03 v 4 Sursn pagnuapt sjusuodwo)) : -1 Wwoxj
SuSuer uornNGLYSIP ULIOJUN B WOy pa3da[as (9 pue ) 1030ej Surpeos e £q jusuoduuod yoes Surddnmnu Aq punog st qurod eyep 1o ‘uonea
-195q0 uaAIS e 10§ Jusuodurod Yora Jo uonnqLiuod 3y, (Fulxg="1ur) Ay pue (g Q="ur) L\ ‘S3[osnu oM} Uusamiaq (panunuo))) z-S a4nbiy

I H D
RITITT]
0
X
0
- ;
_ w g0 -. _— M
w i - w oL [
<.M\w. . +
umuw-..-t. .f.w.. a0 w &5 = ...W 2w
2 w5 0— " (™ . 0
o = e T 0 M oo Wy
L) 7y, . i w 0wty “w )
) ul e -, T

uoneanoe s jo soner paxy Surdypads sjusuodwod omy Sursn papPNISUd ST BIe(] 1V (IAN) UOEZLIONE] XLjew dAnedau-uou
pue (vDd) sisdreue sjusuodwos redpunid Sursn pagnuspr sjusuodurod usamiaq sdusIpIp Sunensny sidurexe -z v z'S a.nbiy

- . - ] - .
| 3 ad
'wob - w1 - ‘w b
.mwa
(%6€) : % " .
iz -,m_.n . iy Bk ‘.l. _. B s s ; . e
s 0 wady 0 " ] 0
Juug eadg. £0X 4

(%19) 2w L i Y P o™ M - +- [} m

s T} -. _.w...l_.g |-..|—.” R.np.s [% I-..I_n_w —g

- 29, (1) 2 (%28) '8 = v

-

fw
0 junz

i W w w w

L O e I 0
L LM i C (e _“,caaz.. G . Q+- __ m
e IS | TS SR (i

uonisodwoosq 4NN uomsodwosaq vod UORONSUOD Ble

~
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In NMF, the components prescribe a subspace within which all data
points must lie. Because of the non-negativity constraints, only the points
lying between the two components can be described (e.g., Fig. 5.2A).
Thus, components from NMF tend to identify the edges of the dataset
and define a convex hull, or polygon, within which all of the feasible data
pointslie (e.g., Fig. 5.2C). The condition of independence requires that each
additional component increase the allowable subspace, as no two compo-
nents can be represented as a linear combination of other components.
Because there is no constraint on orthogonality, it is also possible for one
component to change and the others to remain the same.

Therefore, the non-negativity constraints within NMF make it more
restrictive than PCA, delimiting regions of the low-dimensional space that
cannot be reached. Although dimension reduction can be achieved in both
techniques by examining only the first few components, NMF imposes fur-
ther restrictions. Components derived from PCA tend to describe the major
direction of the data without imposing restrictions within the space defined
by those components. In contrast, NMF prescribes a subspace in which pos-
sible combinations of muscle activity lie, restricting the expressible data
points using those components.

Consider an example using the same components, W, and W, as in the
previous tutorial, except this time the data are preferentially weighted
toward using W, (Fig. 5.2D, data construction). This dataset was created
from sampling the same muscle activation components as in the prior
example, but with a higher activation of W, over W.,. Using PCA, both com-
ponents changed direction compared to the previous tutorial (compare
Fig. 5.2E and 2B). The first PCA component (Wy,,) rotated closer to the
mean of the observed pattern of muscle activity and now looks qualita-
tively similar to the original W, used to construct the data (Fig. 5.2A),
accounting for 97% of the variance. The second component must rotate a
similar amount to maintain orthogonality (compare Fig. 5.2B and 2E). Both
components identified in this case look different from those identified
using PCA in the previous example. Thus, PCA describes the data in a
similar sense to a mean and standard deviation. In contrast, both compo-
nents found using NMF (Fig. 5.2F) were similar to the components W, and
W, used to generate the data (Fig. 5.2D) and to those identified in the previ-
ous tutorial (Fig. 5.2C). There was a slight shift in the second component
simply because there is less variance in that direction, and therefore a larger
confidence interval. Thus, the components obtained from NMF identify
vectors that prescribe the same space of possible solutions using those two
components as in the prior tutorial, even when one component is more
heavily weighted than the other. '

Physiological Interpretability of PCA Versus NMF Components

In PCA, a component, W;, can contain positive and negative numbers rep-
resenting relative muscle activation levels, as well as positive and negative

5. Decomposing Muscle Activity in Motor Tasks 111

weightings, ¢;. This means that positive and negative relationships can be
inverted easily by negative weighting values. In the context of muscle acti-
vation patterns, this equal relationship between positive and negative
activation is inconsistent with the transformation between motorneuron
action potentials and muscle activity. Although motoneurons no doubt
receive inhibitory as well as excitatory neural activity, the inhibitory effect
can only be seen on motor output if there is also a high background level of
muscle activity. That is, if inhibition occurs when muscles are quiescent,
they have no effect on muscle activity due to the rectifying properties of
neural transmission. Moreover, excitatory pathways and effects cannot be
made inhibitory, and vice versa, so that there is no reason to think that an
excitatory pattern would be identical to an inhibitory one. In contrast, in
NMEF, the components are constrained to be non-negative, which is physi-
ological for neural and muscle output, since neurons are either firing action
potentials (positive signal) or else in a resting state (zero signal).

One interesting result of the non-negativity constraint in NMF is that the
underlying components resemble a “parts-based” decomposition, in which
a series of parts are summed to create a whole. Since each component, or
part, that is added cannot be subtracted out through the contributions of
another component, the parts must resemble identifiable features of the
output. In contrast, allowing negative numbers in PCA means that a given
data point is created by addition and subtraction of contributions from dif-
ferent components to a given muscle’s activity. The first component
describes the mean, and the next components can add or subtract activity
from that mean. Therefore, the resulting data point may bear no resem-
blance to the identified principal components.

Here, we demonstrate the different ways in which PCA and NMF deal
with data that are not evenly distributed. Consider an example using data
constructed from the same components, W; and W, from the first two tuto-
rials, except now part of the data is skewed toward using W, and part
skewed toward using W (Fig. 5.2G). The components identified using PCA
are similar to those found in the first tutorial: The first component passes
between the two main “clouds” of data, and the second is orthogonal to the
first (compare Fig. 5.2H to 2B). In contrast, components extracted using
NMEF look very similar to the original Wyand W, used to generate the data,
as well as to those identified in the first two tutorials (compare Fig. 5.2 to
2F and 2C). The components lie along the edges of the data “clouds,” and
therefore can be used to describe any data points between them.

In this example, the components from PCA are directed in similar direc-
tions as in first example, with the first component aligned along the mean
values of m; and m, across the dataset (Fig. 5.2H). Most of the data points
are reached by scaling the contribution of the first component and adding
or subtracting a contribution of the second component. However, these
components do not resemble the two-armed “parts” of the dataset. In
contrast, the components from NMF are again similar to those used to
generate the data, and similar to the components found from the two other
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data sets (Fig. 5.2I). Here, the two components from NMF clearly identify
two of the underlying “parts” that are obvious in the dataset (similar results
can also be achieved through independent components analysis [ICA] in
combination with PCA [Hyvirinen 2001; Tresch et al. 2006]).

Similarly, in the original paper describing differences between PCA and
NMEF, the components underlying decomposition of an image of a face
were compared (Lee and Seung 1999). All of the PCA components look like
entire faces, which are then added and subtracted together to generate a
given face. To generate a face with a medium nose, large eyes, and small
mouth, one might imagine starting with the mean face expressed by the
first principal component and adding a component with a large nose, large
eyes, and medium mouth, then subtracting another component with a
small nose, medium eyes, and small mouth. The NMF components, how-
ever, are characterized by face parts such as the nose, eyes, and mouth. A
face would be generated by selecting a component nose, scaling it by a
medium number, selecting a component eyes and scaling it by a larger
number, and selecting a component mouth and scaling it by a smaller
number. Interestingly, this kind of parts-based decomposition is similar to
the type of neural representations observed in the visual and other sensory
encoding systems (Olshausen and Field 2004). Accordingly, there has been
a shift from the use of PCA to NMF in visual system research (Simoncelli
and Olshausen 2001).

IDENTIFYING COMPONENTS USING PCA AND NMF: A POSTURAL
CONTROL EXAMPLE

Taken together, these three tutorials illustrate key differences in how PCA
and NMF describe and partition the variability in a given data set, which are
relevant to how they can be used to test motor control hypotheses. Although
all of the data were generated from the same set of underlying components,
the components identified by PCA changed when the mean levels of muscle
activation changed, and all of the components changed simultaneously.
NMEF has the ability to identify components that are stable across different
conditions, but combined differently. This demonstrates how different con-
clusions regarding the robustness and generality of components might be
drawn depending on which decomposition algorithm is used.

In the literature, both PCA and NMF have been used to examine whether
stable motor modules are used for generating movements. Several studies
have addressed muscle coordination in standing balance control, because
muscles in various regions of the body tend to act synchronously, and pat-
terns of muscle activation can be easily related to a direction of body
motion. During postural body sway, PCA has been used to identify compo-
nents, called M-modes, that correspond to the direction of center of pressure
changes used to stabilize the body (Aruin et al. 1998; Krishnamoorthy et al.
2003a). Similarly, in responses to different directions of perturbation during
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standing balance control, components from NMF, referred to as muscle syn-
ergies, have been identified that correspond to the direction of force applied
at the ground to stabilize the body (Ting and Macpherson 2005; Torres-
Oviedo et al.2006). However, as the number of postural conditions is
increased, the underlying M-modes from PCA are found to change
(Krishnamoorthy et al. 2004), whereas the muscle synergies from NMF
remain consistent (Torres-Oviedo et al. 2006; Torres-Oviedo and Ting
2010).

Rarely are both techniques used in the same study, so that it is difficult to
know whether the differences in the literature reflect the techniques used,
the experimental design, or the particular motor tasks tested. Moreover,
since NMF requires several decisions on the part of the investigator, choos-
ing the right number of muscle synergies is not necessarily straightforward,
which may also lead to different conclusions being drawn. Here, we provide
examples where both PCA and NMF are performed on actual data from one
subject during postural responses to multidirectional perturbations.

Introduction to Postural Responses

In order to maintain balance in light of an unexpected perturbation of the
support surface, humans and animals must keep the projection of their
center of mass (CoM) within the limits of their base of support. Various
strategies may be used when balance is disrupted, requiring the activation
of different muscles, such as taking a step, grabbing a handrail, or main-
taining the feet in place to restore balance. When standing balance is dis-
turbed with a discrete perturbation, first the direction of falling is sensed,
and then the appropriate muscles are activated to restore balance. The ini-
tial change in muscle activity in the lower limbs does not occur until
approximately 100 ms following the onset of a perturbation, and this initial
muscle activity is called the automatic postural response (APR). Variations
are observed even in responses to the same perturbation direction due to
attention, expectation, and the like (Woollacott and Shumway-Cook 2002).
When many trials and many perturbation directions are examined, the dif-
ferences observed in individual muscle activations are difficult to interpret
(Horak and Macpherson 1996; Henry et al. 1998). One hypothesis is that the
nervous system activates these muscles in groups, and decomposition tech-
niques such as PCA and NMF can be used to identify such groups and the
relationships between the muscle activations (Krishnamoorthy et al. 2003a;
Krishnamoorthy et al. 2003b; Torres-Oviedo and Ting 2007).

To generate the postural data examined here, subjects stood on a plat-
form, which was suddenly moved in one of 12 different directions in the
horizontal plane. Electromyographic (EMG) signals were collected from
16 lower trunk and leg muscles from the right side. For each trial, mean
muscle activity during three time windows during the APR was calculated:
100-175 ms following perturbation onset (PR1), 175-250 ms (PR2), and
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Figure 5.3 Example of postural responses to a backward and leftward pertur-
bation of the support surface. A: Platform displacement during the ramp-and-
hold perturbation. Electromyograph (EMG) responses occur 100 ms after the
onset of platform motion (vertical dashed line). Shown here are tibialis anterior
(TA), medial gastrocnemius (MGAS), rectus femoris (RFEM), and rectus
abdominus (REAB) EMG responses. Mean EMG activity was calculated for
three time bins during the APR (shaded region), beginning 100 ms (PR1), 175 ms
(PR2), and 250 ms (PR3) following perturbation, as well as one background
time period. Ground reaction forces under the right foot are also shown. B:
Muscle tuning curves generated from 12 evenly spaced perturbation directions,
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250-325 ms (PR3), as well as one background time window before the per-
turbation began (Fig. 5.3A). Therefore, this data set consisted of 16 muscles
and 240 conditions (4 time windows x 12 perturbation directions x 5 trials
in each direction). All of the data were arranged in a matrix in which each
of the 16 rows contains the 240 observed values for a single muscle. The
values in each row were normalized to the maximum value in that row,
corresponding to the maximum level of muscle activity observed for that
muscle across all conditions. Therefore, for each muscle all values ranged
from 0 to 1. Before components are extracted using NMF, each muscle was
also normalized to have unit variance, meaning that the sum of the squared
values in the row equals 1. This allows the variations in each muscle to be
considered with equal importance by the algorithm. One practical consid-
eration is that, for NMF, the data should always be presented in the format
N muscles x M conditions. However, PCA requires the data be transposed,
in the format N conditions x M muscles.

In response to horizontal plane disturbances, each muscle was preferen-
tially activated for particular perturbation directions (Fig. 5.3B). The muscle
“tuning curves” demonstrate the directional sensitivity of the muscles.
Each muscle is active maximally in a given direction, and less so for other
directions. Some muscles have a single preferred direction (e.g., vastus-
medialis, VMED), whereas others have multiple tuning directions (e.g.,
rectus abdominus, REAB). The muscle tuning curves demonstrate that each
direction of perturbation evokes a different combination of muscle activity.
The error bars on the muscle tuning curves also illustrate trial-to-trial vari-
ations observed in postural responses. Therefore, across perturbation direc-
tions, and even within a perturbation direction, different patterns of muscle
activity are evoked. Does this mean that each muscle must have an inde-
pendent neural command specifying its level of activation (Macpherson
1991)? Using NMF and PCA, we can test the hypothesis that the observed
variations can be explained by the activation of a few muscle synergies
(Fig. 5.1). In the following section, we will compare how NMF and PCA
describe postural response data, address practical issues of selecting the
appropriate number of components, and examine the robustness of the
components across different postural tasks, specifically, two-legged versus
one-legged perturbation responses.

Figure 5.3 (Continued) taken from time window PR2. Muscle tuning curves
vary in magnitude over all perturbation directions, and their shapes vary from
muscle to muscle. In addition to the four muscles shown in A, tensor fasciae
latae (TFL), semimembranosus (SEMB), semitendinosus (SEMT), biceps femo-
ris long head (BFLH), peroneus (PERO), lateral gastrocnemius (LGAS), erector
spinae (ERSP), abdominal external oblique (EXOB), gluteus medius (GLUT),
vastuslateralis (VLAT), vastusmedialis (VMED), and soleus (SOL) were also
collected. Shown are the mean tuning curves * standard deviations for five
trials in each perturbation direction, presented randomly.
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Figure 5.4 Components and activation coefficients identified from postural
response data using principal components analysis (PCA) and non-negative
matrix factorization (NMF). A: Components identified using PCA may have
positive and /or negative muscle contributions and activation coefficients. Each
bar represents the contribution of that muscle to that component. Percentages
indicate the amount of total data variability accounted for by each component.
Activation coefficient tuning curves from PR2 are shown as mean * standard
deviation of five trials. B: Tuning curves created from a single trial in each
direction for two muscles reconstructed using the components identified in A.
The contribution from each component is added or subtracted to form
the reconstructed muscle tuning curve. The original data are shown with a
dashed black line and the reconstructed data are shown with a solid black
line. The variability accounted for (VAF) by the reconstruction as well as r?
values are shown for each muscle tuning curve. C: Components identified
using NMF have only positive muscle contributions and activation coefficients.
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Components of Postural Responses Identified by PCA and NMF

Here, we compare five components selected by NMF and PCA to describe
the postural response data for normal, two-legged stance (the procedure for
selecting the number of components will be described in a later section).

The components identified by PCA are composed of muscle contribu-
tions that are both positive and negative, and are activated by weighting
coefficients (or scaling factors) that may also be positive or negative
(Fig. 5.4A). This example illustrates again that the components are identified
in order of the percentage of variance that each explains. The first compo-
nent describes the mean level of activity of the muscles across all conditions,
and therefore has positive contributions from all of the measured muscles,
with strong contributions from TA and PERO (Fig. 5.4A, W1,,). The first
component is also strongly activated for forward (90-degree) and back-
ward (270-degree) perturbation directions, which evoke much more muscle
activity than lateral perturbation (Henry et al. 1998). The subsequent com-
ponents have contributions from fewer muscles, and these contributions
are both positive and negative. Additionally, the activation coefficients
may be positive or negative for different perturbation directions, and the
magnitude of activation decreases with each subsequent component.

The way in which PCA decomposes data can best be illustrated by
examining how the components contribute to an individual muscle tuning
curve. Due to the positive and negative values taken both by the compo-
nents and the activation coefficients in PCA, contributions from different
components can be added and subtracted to obtain the total predicted
muscle activity. An example of this can be seen in the reconstruction of the
VMED tuning curve from the individual contributions from each compo-
nent (Fig. 5.4B), which are found by multiplying the height of the VMED
bar in each component with the activation coefficient for a given direction.
Thus, each of the contributions resembles a scaled and possibly inverted
version of the activation coefficient tuning curves of each component
(Fig. 5.4A). The resulting tuning curve for VMED is generated by adding all
five curves together (Fig. 5.4B, botton). Although the peaks of the various
contributions can vary, the resulting VMED tuning curve peaks near
90 degrees, and is roughly zero between 180 and 360 degrees. The response

Figure 5.4 (Continued) Percentages indicate the amount of total data variability
accounted for by each component. Activation coefficient tuning curves from
PR2 are shown here as mean + standard deviation of 5 trials. D: Two muscle
tuning curves reconstructed using the components identified in C. The contri-
bution from each component is added to form the reconstructed muscle tuning
curve. The original data are shown with a dashed black line and the recon-
structed data are shown with a solid black line. The variability accounted for
(VAF) by the reconstruction as well as 12 values are shown for each muscle
tuning curve.
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of the VMED to the 90-degree perturbation is high, and is due to positive
contributions from W, Wapcas Wipear and Wi, and a negative contribu-
tion from Wi, (Fig. 5.4B, bars). Similarly, in the region between 180 and
360 degrees, negative and positive contributions from all the components
cancel each other out, so that the resulting tuning curve is near zero. To
reconstruct the tuning curve of MGAS, the same curves are scaled differ-
ently and added together. The near-zero activity of MGAS in the 90-degree
perturbation direction results from the cancellation of positive and nega-
tive contributions, primarily from Wipea and Wo,. In general, when using
components identified by PCA, the reconstructions tend to underpredict
the recorded muscle activity.

In contrast to PCA, the components and activation coefficients identified
by NMF contain only positive values, as constrained by the algorithm.
They are identified in no particular order, as evidenced by the percentage
of total variance accounted for by each component (Fig. 5.4C). Each compo-
nent has large contributions from a few muscles, and smaller contributions
from several other muscles, illustrating the multijoint coordination required
for postural control. Each component has a corresponding activation coef-
ficient that is tuned for a particular range of perturbation directions. These
activations are also positive, and the magnitude of activation is similar
across all five of the components.

The reconstruction of the individual muscle tuning curves illustrates the
differences between PCA and NMF in the way the components are com-
bined to predict the recorded data. As with PCA, the height of the VMED
bar in each NMF component is used to scale the contribution of each com-
ponent’s tuning curve. In this case, since VMED is virtually zero in Wiy
and Wy, these components make essentially no contribution to the VMED
tuning curve. In contrast to the case with PCA decomposition, the activity
of VMED at 90 degrees is due to the additive contributions of three compo-
nents Wimg, Wanms, and Wi, (Fig. 5.4D).

Using NMEF, there is no cancellation of features (Fig. 5.4D). Each mus-
cle’s activity is reconstructed by adding the contributions from each muscle
synergy, all of which are positive. Once a feature of the tuning curves is
expressed in the contribution of a given component, it cannot be subtracted
out. For MGAS, the tuning curve consists primarily of contributions from
Winme which causes high activity of MGAS between 180 and 360 degrees,
and Wi, which is responsible for a low level of activity of MGAS between
0 and 180 degrees.

The separation of the contributions from each component makes it pos-
sible to use the patterns of muscle activity within each component to make
predictions about the activity of other muscles. In this case, the activity of
MGAS between 180 and 360 degrees can be attributed to Way,.¢, which coact-
ivates high MGAS activity with high extensor activity in the LGAS, GLUT,
and SOL. When MGAS is active between 0 and 90 degrees, its activity is due
to Wi,y which coactivates small MGAS activity with high flexor and ham-
string activity in SEMB, TA, and SEMT. This demonstrates that MGAS
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activity in different perturbation directions results from fundamentally dif-
ferent muscle coordination patterns. It may be a prime mover in 180- to
360-degree perturbations, and a stabilizer in 0- to 90-degree perturbations.
The analysis demonstrated that MGAS is strictly covaried with SOL from
180 to 360 degrees, and strictly covaried with TA from 0 to 90 degrees. A
traditional correlation analysis would reveal MGAS to be strongly corre-
lated to SOL, and weakly correlated to TA, but it would not be able to
decompose the different portions of MGAS activity to one or the other.

Here, the coefficient of determination (r2) and variability accounted for
(VAF), which are measures of goodness-of-fit between the predicted and
recorded EMG signals, demonstrate that NMF components can explain the
recorded muscle responses more closely than PCA components (NMF
average 12 for all muscles: 0.84, average VAF: 95.5%; PCA average 12 for all
muscles: 0.81, average VAF: 58.9%). Both 12 and VAF are defined as the
coefficient of determination, or percent variability accounted for in the
dataset (1 - sum of squares error/total sum of squares). The Pearson cor-
relation coefficient, r, is based on a linear regression with an offset and thus
compares only shapes of two curves, allowing for their actual values to
differ. VAF is based on a linear regression that must pass through the
origin, and therefore requires that the actual values of the measurements
be equal to have a high percent of variability accounted for. In the standard
Pearson correlation coefficient (12), the sum of squares is taken with respect
to the mean, whereas in the uncentered case (VAF), it is taken with respect
to zero. In this postural example, PCA reconstructs the shape of the tuning
curve well, but not the offset; as expressed by the reasonably high 2 values,
but much lower VAF. In contrast, NMF reconstructs the level of activity
well, and allows for more differences in the shape of the curve, which is
evidenced in the high VAF values.

Selecting the Appropriate Number of Components Using NMF

In both NMF and PCA, the investigator must determine the number of
components required to sufficiently explain the data. With PCA, a cutoff of
the total percent variability explained is typically chosen, and the compo-
nents with the largest contributions are chosen to meet that criterion. A
similar criterion can be used in NMF, in which the analysis is run multiple
times, each with a different number of components, and VAF can be plot-
ted as a function of component number (Fig. 5.5A). In this postural data
example, a cutoff of 90% VAF selects four components. Note, however, that
the VAF due to one component is very high, so that high VAF values can
be misleading in the overall variability because generally they represent a
small portion of the data having a large amplitude that contributes the
most to the overall data variability.

Whether using PCA or NMF, using the overall variability accounted
for to select the number of components may not generate adequate recon-
structions of data, particularly when there are certain conditions in which



A. Overall VAF
100
75
3
w50
<
>
25
0 i i
01 2 3 45 6 7 8 910
Number of components
B. VAF by muscle
100
75
£
w 50
<
>
25
0 " F—
012 3 45 86 7 8 910
Number of components
C. VAF by direction
100 —
- —
.--’--ﬂ--/; -
75 A
£ 5o
< 0
= SRR
25 90°
------ 180°
—_—— 270"
0 P

0123 456 7 8 910
Number of components
Figure 5.5 Scree plots showing variability accounted for (VAF) between the

original data and the reconstruction using non-negative matrix factorization
(NMF) components for the data shown in Figure 3. A: VAF for increasing

170

5. Decomposing Muscle Activity in Motor Tasks 121

generally less activity occurs, but which nonetheless are an important
feature of the dataset. In the postural control example, the overall level
of muscle activity is higher in forward and backward directions. When
choosing a smaller number of components, the muscle activity in forward
and backward directions tends to be well-explained, whereas activity in
lateral directions may not be well-reconstructed. Because muscle activity in
lateral directions represents a small fraction of the total variability, it is dif-
ficult to discern from the overall VAF scree plot when such variations
are accounted for. In both analyses, large differences in the magnitude of
the variability across conditions always poses a problem when selecting
components.

A number of additional criteria can be imposed to ensure that desired
features of the dataset are reconstructed. For our postural control example,
we further examined the variability accounted for within subsets of the
data. We examined the VAF of each muscle, which ensures that each mus-
cle’s tuning curve is well-reconstructed. In certain cases, when a muscle’s
contribution to the overall variability is low, the features of its tuning curve
may not be well reconstructed by the selected number of components,
requiring additional components to be added. We then examined the data
by perturbation direction, ensuring that the differences in the relative levels
of activity by direction do not cause muscle activity in certain directions to
be ignored. In these cases, rather than having a smooth increase in VAF as
components are added, there tend to be jumps when the salient features are
accounted for. Therefore, we specify a minimum %VAF that should be
accounted for in all muscles and all perturbation directions, as well as
require that the addition of the next component should not drastically
improve the VAFs. Ultimately, however, only an experienced researcher
examining the reconstructions of the original raw data traces can deter-
mine whether the features accounted for are physiological or are artifacts.

The scree plots from the postural response example demonstrate how
five components were selected in this case (Fig. 5.5). Examining the overall
VAF (Fig. 5.5A) reveals that one component seems sufficient to explain
the variability in the data, using a 75% VAF criterion. However, examining
the scree plots for individual muscles reveals that five components are

-l

Figure 5.5 (Continued) number of components over the entire data set. B: VAF
for increasing number of components for four individual muscles: REAB, TFL,
GLUT, VMED. One component accounts for variability in GLUT relatively
well, three components can explain VMED variability, but five is better at
explaining variability in TFL and REAB. C: VAF for increasing number of com-
ponents across individual perturbation directions. Shown here are the four car-
dinal directions, but the number of components needed was selected by looking
at these types of plots for all muscles and all perturbation directions.
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necessary in order for each of the muscles to achieve >75% VAF (Fig. 5.5B).
These curves demonstrate that the activity of GLUT is well accounted for
by the first component, but that activity of the other muscles is not. Three
components are necessary for VMED to pass the 75% threshold. However,
the addition of the second and third components does not change the VAF
of TFL and REAB, as illustrated by the flat part of the lines. The fourth and
fifth synergies account for the variability in TLF and REAB, respectively.
Note that the addition of a sixth component does not drastically improve
the VAF in any muscle. Therefore, five muscle synergies were chosen.
Examining the variability accounted for across the various perturbation
directions leads to a similar conclusion (Fig. 5.5C). Most directions have
>75% VAF using only one or two components, but there is a sizeable
improvement from four to five components for backward perturbations
(270 degrees).

Finally, the composition of the components should be examined as addi-
tional components are added. The sharp jumps in the scree plots of VAF by
muscle and by perturbation direction suggest that including an additional
component may cause a previous component to split (Fig. 5.5B, sharp jump
in REAB VAF from four to five components). The number of components
selected as sufficient to explain the data should be high enough such that
the components have stabilized, and the addition of new components does
not significantly change the previous components. In this example, the
composition of the components when six components (not shown) were
used was compared with the five components identified here and shown
not to alter the composition of the five components. Additionally, the
reconstructions of the data and the activation coefficients of the sixth com-
ponent can be used to deduce its contribution to features in the data. If the
additional component accounts for a feature, such as a particular burst of
muscle activity or tuning direction, that is unaccounted for by the other
components, then it may be important; the investigator must decide
whether this is a critical and/or physiological feature. If the activation coef-
ficients appear to be evenly distributed across all perturbation directions, it
is unlikely to account for a feature associated with muscle activation in a
given direction, but is more likely noise.

USING NMF VERSUS PCA TO TEST MOTOR CONTROL
HYPOTHESES: STANDING AND WALKING

Although it is possible to apply either PCA or NMF to any data matrix, the
results may not necessarily provide insight into the underlying physio-
logical mechanisms. It is important to ensure that the results are not arti-
facts of data collection or experimental design. Both techniques allow the
dimension of the dataset to be identified. However, the maximum dimen-
sion is limited by the number of muscle signals analyzed, as well as by the
number of disparate conditions examined. Therefore, it is critical that the
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data matrix itself be of high enough dimension such that a reduction in
dimension is meaningful. The extraction of components relies on muscles
being coordinated in different patterns. Therefore, the number of muscles
recorded must be adequately high to capture different patterns of covaria-
tion, and the number of experimental conditions or possible variations
observed must be of high enough dimension to capture different coordina-
tion patterns among the muscles. If muscle activation patterns are truly
independent, this will also be reflected in the component analysis.

For example, the early studies of postural responses examined only two
directions of perturbation (forward and backward). It was suggested that
there were only two muscles synergies necessary, one active for forward
perturbations, and another for backward perturbations (Nashner 1977;
Horak and Macpherson 1996). However, these findings revealed experi-
mental rather than physiological constraints. If NMF or PCA were applied
only to forward and backward perturbations, they would arrive at a simi-
lar conclusion because the data only represent two conditions. By examin-
ing multiple perturbation directions, it becomes clear that more than two
muscle synergies are needed to describe the full repertoire of postural
responses (Macpherson 1988; Macpherson 1991; Henry et al. 1998), but a
new muscle synergy is not necessary for each perturbation direction
(Torres-Oviedo et al. 2006; Torres-Oviedo and Ting 2007). Similarly, the
total number of components that can be extracted is limited by the number
of muscles that are recorded. It also depends upon muscles being coacti-
vated during certain conditions and not others. Therefore, if only a few
muscles are recorded, it is possible that they would each comprise a single
synergy if they are independently activated. Conversely, if they are always
coactivated, then they will comprise only a single muscle synergy. Again,
sufficient experimental conditions must be tested to demonstrate that the
muscles could be coactive or independent, depending upon the condition.
Such manipulations in pedaling revealed that certain muscles that are
always coactive during forward pedaling may have different patterns of
activation in backward pedaling (Ting et al. 1999).

Once it is established that the number of muscles and conditions is
appropriate and can provide enough variability to extract a smaller number
of components, the robustness of such components can then be tested
across tasks (Krishnamoorthy et al. 2004; Cheung et al. 2005; d’ Avella and
Bizzi 2005; Torres-Oviedo et al. 2006). The generality of muscle synergies
has been shown in a few studies in which synergies were shared between
multiple tasks, such as frog kicking, jumping, and swimming, and in
human walking/running, and pedaling forward and backward (Raasch
and Zajac 1999; Ting et al. 1999; Cheung et al. 2005; d’ Avella and Bizzi 2005;
Cappellini et al. 2006; Torres-Oviedo et al. 2006). Although some synergies
are used in multiple tasks, sometimes new synergies emerge when a new
motor task is presented (Ivanenko et al. 2005) or the activation of the syner-
gies may be adjusted (Cappellini et al. 2006).
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Figure 5.6 Comparison between components identified from one-leg postural
responses compared to those identified from two-leg postural responses.
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Here, we provide two examples of the differences between NMF and
PCA when applied to test the robustness of muscle synergies (a) across
postural tasks, and (b) during walking.

Are Muscle Synergies Stable or Artifact? Shared Versus
Specific Components

Here, we used PCA and NMF to test whether muscle synergies are stable
across postural tasks by comparing the components extracted from pertur-
bations in two-legged stance extracted above (Fig. 5.4) to those from per-
turbations during one-legged stance. Subjects stood on their right leg and
were subject to 12 directions of perturbations of smaller velocity and ampli-
tude than in two-legged stance. One- and two-leg data were recorded in
the same session, so that the activity of the 16 lower trunk and leg muscles
from the stance side could be directly compared. :

When PCA was applied to the one-leg data set to identify muscle syner-
gies, two of the components extracted were similar to those identified from
the two-leg postural responses (Fig. 5.6A). The first component (W’y,,) is
comprised of small contributions from all of the muscles, representing the
average responses, so these would be expected to remain the same. Because
the similarity between components from one- and two-legged stance are
mainly based on the mean level of muscle activity, the VAF provides a
better representation of the similarity than 12 (12=0.0291, VAF = 82%).
The third component from one-leg responses, Wiape (Fig. 5.6A, gray bars),

-

Figure 5.6 (Continued) A: Comparison of components and activation compo-
nents identified using principal components analysis (PCA). Black bars and
lines are two-leg responses (same as in Figure 5.4), and gray bars and lines are
one-leg responses. Percentages on the left-hand side of each component repre-
sent the percent total variability that each component accounts for. Numbers to
the right of each component are indicators of how closely the component from
one-leg responses matches the one from two-leg responses. Both r2 and uncen-
tered r? (variability accounted for; VAF) are shown. The first component from
one-leg (W’y,.,) and two-leg responses (W,,,) matches fairly well, and the third
component from one-leg responses (Ws,.,) matches the second component
from two-leg responses (W,,,). Subsequent components do not match: due to
the orthogonality constraint of PCA, when one component changed, subse-
quent components changed also. B: Comparison of components and activation
coefficients identified using non-negative matrix factorization (NMF). The
same components are used in one-leg and two-leg responses, with the excep-
tion of one component that is specific to either condition. The additional com-
ponent used in one-leg responses is tuned for 0-degree perturbations, which
presumably are accounted for by the left leg in two-leg responses. The same
components, or muscle synergies, can explain the different individual muscle
activations observed between these two tasks, by only changing the activation
of the muscle synergies.
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looks similar to the second one identified from two-leg responses, Wy,
(Fig. 5.6A, black bars), suggesting it is more highly activated in two-leg
responses. The other components, most of which account for a smaller per-
centage of variance, are quite different in the one-leg task compared to the
two-leg task (max r2 = 0.176, max VAF=17.5%). Therefore, if PCA were
used to identify muscle synergies, the conclusion would be that different
muscle synergies are used for one- and two-leg postural responses.

When NMF was applied to the one-leg data set to identify muscle syner-
gies, however, four of the five components were very similar to those used
during the two-leg balance responses (12=0.27 - 0.76, VAF=51%-85%,
Fig. 5.6B). The muscle contributions to each of these four components was
similar, and the activation coefficient tunings shifted slightly to account for
differences in individual muscle tuning curves. The fifth component from
two-leg stance (Wy,me) had a large contribution from REAB, a hip flexor,
whereas the fifth component in one-leg stance (W's,y¢) has primarily SOL
activity, an ankle extensor. This is likely because subjects were more likely
to use a hip strategy in two-leg stance compared to one-leg stance. Further,
the component used in one-leg stance (W's,ne) Was strongly activated for
rightward (0 degree) perturbations. Note that, in the two-leg stance, none
of the five components were tuned for rightward perturbation directions
(Fig. 5.6B). This suggests that when both legs can be used to respond to a
rightward perturbation, subjects use muscles in the left leg to restore their
balance, but when the left leg is not available, an additional component in
the right leg must be activated to compensate for the loss of stability pro-
vided by the left leg. These results show that there are similar components
that are used across postural tasks, suggesting that the muscle synergies
derived from NMF are physiological constraints that the nervous system
uses for muscle coordination, and not simply artifacts of the experiment or
analysis.

Although the example demonstrates the possibility of stable compo-
nents across tasks, thorough cross-validation tests should be performed to
ensure that the components are indeed stable across tasks. Therefore, to
draw stronger conclusions about the physiological basis of the components,
the results of analyses across different subsets and combinations of the data
should be compared (e.g., Torres-Oveido and Ting 2010). Apart from
extracting components independently from control (e.g., two-leg) and test
(e.g., one-leg) tasks, the components from the control condition can be used
to reconstruct the test data. If they do not explain a sufficient percentage of
the variability, then condition-specific components may be extracted from
the remaining variability of the data (Cheung et al. 2005). Additionally,
components extracted from the control and test data pooled into one large
data set should render similar results. If the same components are identi-
fied in all of these cases, it is more likely that the technique has identified
underlying physiological features of the data. In our example using NMF,
the same components are identified in one-leg and two-leg stance using all
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Figure 5.7 Example of muscle activity during a forward walking trial. Shown
are eight muscles of the 16 recorded. The subject was walking at a speed of
approximately 0.7 m/s. The shaded gray boxes indicate stance phase.

these different combinations (not shown). In contrast, PCA generates dif-
ferent components depending on which data combination is used.

Using Time As a Condition: Muscle Synergies During Walking

When applying PCA and NMF to a continuous motor task, such as locomo-
tion, time can be considered to be a condition. Similar to the different direc-
tions of postural perturbations, different coordination patterns across
muscles are observed at different timepoints in the locomotor cycle.
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However, if muscles are activated in a similar pattern across time, such as
in an isometric task, the use of time as a condition may not provide enough
variability in the data to allow for meaningful interpretation. In this exam-
ple, subjects walked freely at a slow (0.7 m/s) pace for at least ten steps
each trial. Data were recorded beginning at heel strike of the third to fourth
step, so that subjects had already reached a steady-state gait, and each trial
includes at least three full stride cycles. Seven trials were included in the
data matrix. Sixteen EMG signals were recorded in one leg (Fig. 5.7).

To create the data matrix, the mean activity was computed in 10 ms bins
over the three steps in each trial. Binning has the advantages of smoothing
the data, reducing the total number of conditions, thus reducing computa-
tion time, while maintaining much of the detail in the variations of the

B. TA reconstruction using PCA

the duration of the stance phase vary from step to step, as does the number
of bins. There is no need to stretch or shorten the data across time to obtain
a consistent number of data points per stride. When creating the data
matrix, different trials are simply concatenated end to end.

It is important to distinguish between two mutually exclusive hypothe-
ses that can be tested by decomposing walking data into muscle synergies.
For both PCA and NMF, the components W; are assumed to be fixed,
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Figure 5.8 Components and activation coefficients identified from walking
data using principal components analysis (PCA) and non-negative matrix fac-
torization (NMF). A: Components identified using PCA may have positive
and/or negative muscle contributions and activation coefficients. Percentages
indicate the amount of total data variability accounted for by each component.
The shaded gray boxes indicate stance phase. Activation coefficients from one
trial of walking (the same trial as in Figure 5.7) are shown. Components from
PCA have contributions from many muscles. The first few components have
activation patterns that are aligned with particular phases of the gait cycle,
whereas the last few have less identifiable patterns. B: TA muscle activity from
a single trial reconstructed using the PCA components identified in A. The
original data are shown with a dashed black line and the reconstructed data
are shown with a solid black line. Variability accounted for (VAF) and r? indi-
cate goodness-of-fit. C: Components identified using NMEF have only positive
muscle contributions and activation coefficients. Components from NMF tend
to have strong contributions from only a few muscles. Activations coefficients
for some components (Winms, Wanme: Wanmer and W) are aligned with particu-
lar phases of the gait cycle, whereas others may be stabilizing components since
they are active throughout the entire trial (Winme and Wi, D: TA muscle
activity from a single trial reconstructed using the NMF components identified
in C. The original data are shown with a dashed black line and the reconstructed
data are shown with a solid black line. VAF and r2 indicate goodness-of-fit.
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whereas the activation coefficients or scaling factors ¢; are allowed to vary
(Clark et al. 2010). Here we choose W's to refer to fixed muscle activation
patterns, whereas we allow s to vary across time. The data must be struc-
tured such that the muscles are the observations (rows for NMF, columns
for PCA) and the time windows are the conditions (columns for NMF,
rows for PCA). Conversely, it is possible to hypothesize that the timing
patterns are stereotypical across cycles, and that the muscle coordination
patterns vary (Ivanenko et al. 2004; Cappellini et al. 2006). Fixed timing pat-
terns might be generated by a central pattern-generating neural circuit,
with their muscle targets changing with phase. In this case, it is necessary
to stretch the cycles in time so that they all have the same number of points.
In this case, the data should be transposed, such that the time points are the
observations, and the muscles are the conditions, with repeated trials or
cycles concatenated. However, in neither analysis can both the components
and the timing patterns vary. Either muscular coactivation patterns or
timing patterns must be assumed to be the same across all conditions.

Here, we compare six components extracted from one subject’s walking
data using PCA and NMF (Fig. 5.8).

Similar to the postural response example, the first component identified
using PCA primarily describes the mean level of muscle activity, and the
later ones described deviations from that mean. The first two components
contained primarily positive contributions from nearly all of the muscles.
The first component was activated positively at the beginning and end of
stance and activated negatively in swing, whereas the second component
was positively activated in swing but negatively activated in stance. The
subsequent components all had both negative and positive contributions
from different muscles, and their activation coefficients over time decreased
in amplitude, but increased in frequency. Although the first three compo-
nents had peaks that corresponded to identifiable events in the gait cycle
and various EMG activity (Fig. 5.7), the last three had high-frequency oscil-
lations that were not localized to a particular phase in the locomotor cycle.
Reconstructing the TA EMG signal reveals that the activity during swing
phase is composed of contributions from two components primarily,
although there are small contributions from all components (Fig. 5.8B).
Both components contribute to the large peak in TA activity. However, the
smaller, secondary burst is due to a positive contribution from Wop,that is
largely cancelled by a negative contribution from Wj,.. (Fig. 5.8B). Note
that the r2 value is quite high, indicating a good match of shape, whereas
the VAF level is low, indicating that the predicted EMG amplitudes do not
‘match measured values.

The six components extracted using NMF were quite different from
those found using PCA. Each component consists of large contributions
from a small number of muscles, and the muscles tend to be grouped
according to joint or function. Some of the components were activated at
specific points during the gait cycle, such as W3¢ being activated at early
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stance and again at late stance, W, activated during early swing, and
Wenme during late swing. Other muscle synergies were activated through-
out both stance and swing, suggesting that they may be used for stabiliza-
tion (Wipms and Wimg). As in the postural example, the bursts of activity
appearing in the activation coefficients resemble the bursts observed in the
original EMG data (Fig. 5.7). Only two NMF components contribute to TA
EMG activity (Fig. 5.8D). Wiy contributes most of the TA activity, includ-
ing the large burst in early swing phase. The contribution from Wy adds
a small secondary burst.

Again, the components extracted during walking must also be cross-
validated over a number of different test extractions to be sure that they are
stable and not artifacts of the way the data are represented. In our NMF
analyses, we find components to be stable across time bins sizes of 10 to
100 ms during walking. Components are also stable if fewer trials are
analyzed, or if faster walking speeds are analyzed. Moreover, the compo-
nents extracted from one speed can account for variations in EMG occur-
ring with changes in walking speed (Clark et al. 2010). However, the
components change if EMGs are averaged across strides, and less of the
variability from stride to stride is accounted for by components extracted
from averaged data.

CONCLUSION

Are linear decomposition techniques useful for understanding motor con-
trol (Macpherson 1991; Tresch and Jarc 2009)? Ultimately, no decomposi-
tion technique is perfect, and much discretion and interpretation must be
exercised on the part of the investigator when drawing conclusions from
any such analysis. Computational analyses cannot replace the judgment
and intuition of the researcher, and ultimately the results must make sense
in a physiological context. Therefore, it is critical that the implicit hypoth-
eses, assumptions, and constraints inherent in any technique be understood
in order to use it usefully in motor control or other scientific research. In the
best-case scenario, a linear decomposition can be a tool that can formally
test a hypothesis that the researcher formulates by looking at the raw data
and observing the synchrony and variability across multiple EMG signals.
It allows different periods of activity within a muscle to be attributed to
different underlying components. In the end, the relationship between the
derived components and the original data may potentially allow a
researcher to draw conclusions about the underlying neural mechanisms if
the components do not represent limitations of the recordings, experimental
conditions, or other data artifact. Ultimately, to make any sort of physiolog-
ical conclusion, the extracted components must be interpreted in terms of
the known underlying physiological mechanisms and biomechanical out-
puts. The examples presented here demonstrate intuitively the workings of
NMEF and PCA, with the aim of informing and aiding in the interpretation
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of data. Such exercises can be performed to better understand any kind of
decomposition technique, each with its own advantages and disadvantages
(Tresch et al. 2006).

Is the added computation useful for understanding motor tasks? In
some cases, the answer may be “no,” particularly for any kind of initial
analysis of a motor task or experimental condition. The technique must
appropriately match the hypothesis. Component decompositions can be
useful when examining the detailed workings of complex multimuscle
coordination. It is useful for comparing complex muscle coordination
across different tasks or trials in which muscle activity changes, but the
underlying coordination principles may be the same, as we have shown in
fast and slow walking (Clark et al. 2010), or one- and two-legged postural
control (Torres-Oviedo and Ting 2010). In cases in which repeated mea-
sures are not possible, such as in patient populations, highly variable motor
patterns are difficult to analyze from traditional techniques that rely on
averaging. In this case, a component decomposition can identify whether
common underlying elements are being activated across different trials
or tasks (Clark et al. 2010). Similarly, the underlying components may
provide a better measure of similarity or differences across individuals
than the comparison of individual EMG traces (Ting 2007; Ting and McKay
2007). It is possible to identify whether individuals with different EMG
patterns have similar underlying components but activate them differently,
or if instead they have different numbers or composition of underlying
components (Torres-Oviedo and Ting 2007; Clark et al. 2010).

Decomposition can also be useful for understanding the function of the
underlying components. These analyses are difficult and do not always
work. They require many practical considerations to accommodate limita-
tions of the analysis techniques, and require the investigator to guess at the
correct variables that are being controlled. But if a relationship is not found,
it does not mean that there is no functional role for that component.
Previous work in postural control has shown in cats that muscle synergies
are recruited to control forces at the ground (Ting and Macpherson 2005;
Torres-Oviedo et al. 2006). Such an analysis includes biomechanical vari-
ables as additional observations (rows) in the data matrix and extracts
functional muscle synergies, which are composed of both muscles and
functional variables (Torres-Oviedo et al. 2006). However, the application
of NMF to biomechanical variables poses a challenge because negative and
positive changes in forces necessarily result from different muscle groups
requiring them to be partitioned physiologically (Ting and Macpherson
2005; Torres-Oviedo et al. 2006; Valero-Cuevas 2009). Because changes in
velocity and position require the integration of forces, the relationship
between muscle activity and kinematics is highly redundant, and also
difficult to predict without explicit models (Gottlieb et al. 1995; Lockhart
and Ting 2007). This redundancy is evident in studies relating the activa-
tion of components found using PCA to center-of-pressure shifts in human
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balance control using the uncontrolled manifold hypothesis (Latash et al.
2002; Krishnamoorthy et al. 2003a; Ting and Macpherson 2005). These stud-
ies demonstrate that, although functional roles of individual components
may be identified, the variability in their activation may not be reflected in
the variability of the output because they are precisely coordinated by
higher mechanisms in the nervous system to reduce variations in the
desired motor task. Alternately, biomechanical simulation and analysis
techniques allow the functional role of the muscle coordination patterns
identified by the extracted components to be explicitly tested (Raasch et al.
1997; Berniker et al. 2009; Neptune et al. 2009). Additionally, the feasibility
of robustly using such components to coordinate a repertoire of movement
can also be explored (Raasch and Zajac 1999; Valero-Cuevas 2000; Valero-
Cuevas et al. 2003; Kargo and “Giszter 2008; McKay and Ting 2008).
However, it is difficult to build appropriate dynamics models and to record
from all of the muscles involved in a movement to use such techniques.
Moreover, models of the neural control mechanisms that shape and use
the components effectively need to be explored (Berniker et al. 2009). Again,
in order for any of these techniques to be useful in relating muscle activity
to functional variables, the investigator must have a good understanding
of their raw data and the underlying physiological and biomechanical
mechanisms in order to interpret the results of the component analysis
appropriately.

Do the identified components extracted using computational techniques
reflect the organization of neural circuits for movement? One of the attrac-
tive features of components from NMF is that they generate a parts-based
type of representation that appears similar to both neurophysiological
observations, as well as to predictions from “sparse-coding” algorithms in
sensory systems (Olshausen and Field 2004). The idea is that in a retino-
topic, somatotopic, or other sort of spatial sensory map in the nervous
system, only a small region is activated for any given stimulus, such as a
location in space, or a part of the body. This “sparse” coding means that a
minimum of neurons is used to encode a particular feature from among all
of the information contained in that map. But, as in PCA, it is also possible
to imagine a system in which neurons in the entire map are activated given
a particular stimulus, and their net output results in the identification of a
particular stimulus. The sparseness property has also been proposed for
motor system, and is proposed to improve energetic expenditure by reduc-
ing the number of neurons involved in any given behavior, as well as
improving computational efficiency, thus reducing the total number of
elements that need to be modified during motor adaptation (Olshausen
and Field 2004; Fiete et al. 2007; Ting and McKay 2007). Accordingly, local-
ized regions of motor cortex are activated to perform a given movement,
and muscle synergies for reaching have been proposed to result from
cortico-motoneuronal cells that project to multiple muscles (Scott and
Kalaska 1997; Graziano and Aflalo 2007). Similarly, reticulospinal neurons
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active during postural control (Schepens and Drew 2004; Schepens and
Drew 2006; Schepens et al. 2008; Stapley and Drew 2009) also project to
multiple muscles in the limbs and trunk, and interneurons in the spinal
cord may facilitate coordination of muscles within and between the limbs
during locomotion (Quevedo et al. 2000; McCrea 2001; Drew et al. 2008).

Although, NMF components may provide one computational tool
among the many needed to understand the sensorimotor transformations
involved in determining how we move, much research is warranted before
any of the questions about the utility and interpretability of the resulting
components can be resolved. Component decompositions allow large data-
sets of EMG data and other variables to be decomposed into components
that must be interpreted and compared to the organization of neural con-
trol systems upstream, and their functional biomechanical outputs down-
stream. NMF is especially useful for examining neural and muscle activity
signals that are inherently non-negative. PCA may prove more useful for
analyzing biomechanical variables that take on both positive and negative
values without consideration for muscle activity. The continued develop-
ment of physiologically relevant decomposition techniques combined with
experimental and computational studies may eventually allow us to better
understand how learning, adaptation, and rehabilitation occurs in the
motor system.
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